

Francesco Santini

University Hospital Basel, Basel, Switzerland
University of Basel, Allschwil, Switzerland

Main developers: Jakob Wasserthal, Abramo Agosti; Medical supervision: Anna Pichiecchio

ISMRM & SMRT Annual Meeting & Exhibition An Online Experience

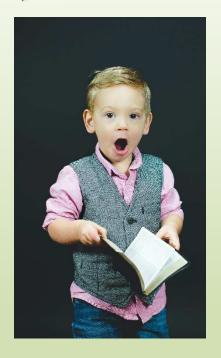
15-20 May 2021

Declaration of Financial Interests or Relationships

Speaker Name: Francesco Santini

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Why are you not doing DL segmentation



Here comes Dafne **

- It has the best kind of learning
 - Deep learning
 - Federated learning
 - It collects improvements from all over the world
 - And it preserves data privacy!
 - Continuous incremental learning
 - It learns from your own expertise, even from few examples!
- It has an easy user interface
 - Everything is under your control
 - It's free, multiplatform, and open source!

* Dafne is the Greek name for bay leaf

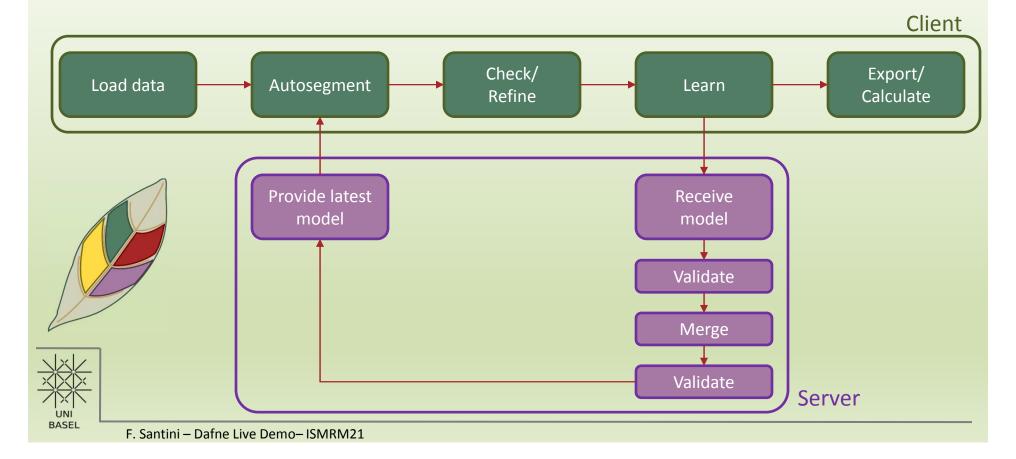
– and also a girl name

Outline of this session

- Overview of the principles behind Dafne
- Live demo
- Extending Dafne together
 - Information for developers

Part I

DAFNE'S PRINCIPLES


The main pillars of Dafne

- 1. Data privacy
 - Your data are never shared with us
- 2. Continuous learning
 - Incremental learning on mini-batches
- 3. Accountability
 - Dafne is always supervised

Dafne Workflow

UNISPITAL BASEL

Current core features

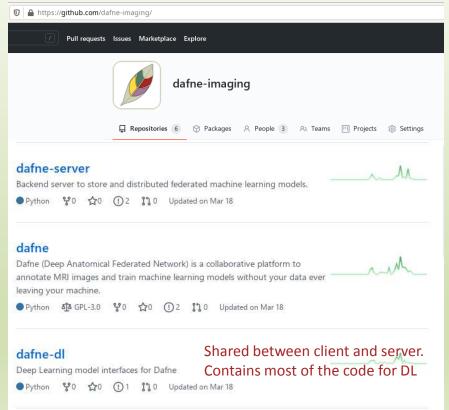
- 2D segmentation network
 - Performance reasons, can be easily changed
- Muscle segmentation of the thigh and leg
 - Extensible, see part 3
- Concept of "Federated Learning"
 - Model training is done by the client
 - Data privacy
 - Distributed computing
 - Adaptation to different data
- Concept of "Continuous incremental learning"
 - Imperfect pretrained models
 - Necessary for usability and to avoid catastrophic forgetting

Getting Dafne

- https://dafne.network/
- Free and multiplatform
 - 100% Python
 - Precompiled binaries for Windows and MacOS
 - (Linux planned use source)
- Need API key to communicate with the server
 - Use ISMRM21 for this session

Part II

LIVE DEMO


Part III

EXTENDING DAFNE

Dafne-imaging github

Deep learning models

- Self-contained serialized Python objects (methods + data)
 - Uses dill for serialization.
- General interface (from dafne-dl/interfaces.py):
 - init model()
 - calc_delta(model) returns delta = model self
 - apply_delta(delta: model) returns self + delta
 - factor_multiply(factor: float) returns factor*self
 - incremental_learn(training_data: dict, training_outputs: any)
 - apply(data: dict)
 - reset_timestamp() resets the internal timestamp

Data dictionaries

- This applies to how data is passed by Dafne currently. The model specification itself is agnostic.
- apply()
 - Input:
 - {'image': 2D image, 'resolution': sequence with pixel sizes, 'split laterality': bool}
 - Output:
 - {'label': 2D mask, ...}
- incremental_learn()
 - training data
 - {'image_list': sequence of 2D images, 'resolution': sequence with pixel sizes}
 - training_outputs
 - [{'label': 2D mask, ...}, ...] (corresponding to the image_list sequence).

Generic implementation

- From dafne-dl/DynamicDLModel.py
- Define unbound functions and pass them as arguments to the constructor
- There source is transparently retrieved and serialized
- Functions to save/retrieve model weights to/from dill-serializable

Example

- Check the sources of
 - dafne-dl/DynamicDLModel.py
 - dafne/generate_thigh_split_model.py
 - This script "packs" the original pretrained thigh model and stores it as a dill file.

Model providers

- Models are retrieved/uploaded by the ModelProviders
- General interface in dafne-dl/interfaces.py
 - load model(str)
 - upload_model(str, model, client_dice_score)
 - _upload_bytes(data) to upload generic data
 - available_models() not part of the basic interface but implemented
- Remote and Local model providers implemented
 - Remote: talks to the server using HTTPS
 - Local: looks into a local directory

Server integration of models

- The server dynamically identifies the available models.
- Models and test data are inserted in a directory structure →
- The merged model is currently an average of the existing model and of the uploaded model
- The test data is used for validation.
- The server is currently hosted on a Google cloud VM

server_db/

- api_keys.txt
- log.txt
- models/

– [model_name]/

- timestamp_merged_model.model
- timestamp_merged_model.sha256
- •
- uploads/
 - timestamp_username.model
- .../
- test_data/
 - [model_name]/
 - data_package.npz
 - ...
 - .../

Conclusion

- Simple, extensible framework for model integration
- Currently based on Tensorflow but agnostic
- Necessity of pretrained models for usability and stability

UNISPITAL BASEL

Thank you for your attention

Check the website:

https://dafne.network/

Contact me directly:

francesco.santini@unibas.ch

Dafne is a collaboration between:

- University Hospital Basel (Switzerland)
- University of Basel (Switzerland)
- Fondazione Mondino (Pavia, Italy)

Supported by the SNSF

SWISS NATIONAL SCIENCE FOUNDATION CRSK-3_196515